Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unified Approach for Drawdown (Drawup) of Time-Homogeneous Markov Processes (1702.07786v1)

Published 24 Feb 2017 in q-fin.MF

Abstract: Drawdown (resp. drawup) of a stochastic process, also referred as the reflected process at its supremum (resp. infimum), has wide applications in many areas including financial risk management, actuarial mathematics and statistics. In this paper, for general time-homogeneous Markov processes, we study the joint law of the first passage time of the drawdown (resp. drawup) process, its overshoot, and the maximum of the underlying process at this first passage time. By using short-time pathwise analysis, under some mild regularity conditions, the joint law of the three drawdown quantities is shown to be the unique solution to an integral equation which is expressed in terms of fundamental two-sided exit quantities of the underlying process. Explicit forms for this joint law are found when the Markov process has only one-sided jumps or is a L\'{e}vy process (possibly with two-sided jumps). The proposed methodology provides a unified approach to study various drawdown quantities for the general class of time-homogeneous Markov processes.

Summary

We haven't generated a summary for this paper yet.