Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayes-Optimal Entropy Pursuit for Active Choice-Based Preference Learning (1702.07694v1)

Published 24 Feb 2017 in stat.ML, cs.IT, cs.LG, and math.IT

Abstract: We analyze the problem of learning a single user's preferences in an active learning setting, sequentially and adaptively querying the user over a finite time horizon. Learning is conducted via choice-based queries, where the user selects her preferred option among a small subset of offered alternatives. These queries have been shown to be a robust and efficient way to learn an individual's preferences. We take a parametric approach and model the user's preferences through a linear classifier, using a Bayesian prior to encode our current knowledge of this classifier. The rate at which we learn depends on the alternatives offered at every time epoch. Under certain noise assumptions, we show that the Bayes-optimal policy for maximally reducing entropy of the posterior distribution of this linear classifier is a greedy policy, and that this policy achieves a linear lower bound when alternatives can be constructed from the continuum. Further, we analyze a different metric called misclassification error, proving that the performance of the optimal policy that minimizes misclassification error is bounded below by a linear function of differential entropy. Lastly, we numerically compare the greedy entropy reduction policy with a knowledge gradient policy under a number of scenarios, examining their performance under both differential entropy and misclassification error.

Citations (2)

Summary

We haven't generated a summary for this paper yet.