Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

k-Means Clustering and Ensemble of Regressions: An Algorithm for the ISIC 2017 Skin Lesion Segmentation Challenge (1702.07333v1)

Published 23 Feb 2017 in cs.CV

Abstract: This abstract briefly describes a segmentation algorithm developed for the ISIC 2017 Skin Lesion Detection Competition hosted at [ref]. The objective of the competition is to perform a segmentation (in the form of a binary mask image) of skin lesions in dermoscopic images as close as possible to a segmentation performed by trained clinicians, which is taken as ground truth. This project only takes part in the segmentation phase of the challenge. The other phases of the competition (feature extraction and lesion identification) are not considered. The proposed algorithm consists of 4 steps: (1) lesion image preprocessing, (2) image segmentation using k-means clustering of pixel colors, (3) calculation of a set of features describing the properties of each segmented region, and (4) calculation of a final score for each region, representing the likelihood of corresponding to a suitable lesion segmentation. The scores in step (4) are obtained by averaging the results of 2 different regression models using the scores of each region as input. Before using the algorithm these regression models must be trained using the training set of images and ground truth masks provided by the Competition. Steps 2 to 4 are repeated with an increasing number of clusters (and therefore the image is segmented into more regions) until there is no further improvement of the calculated scores.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Monica Iglesias (1 paper)
  2. David Alvarez (2 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.