A Nonparametric Bayesian Approach to Copula Estimation
Abstract: We propose a novel Dirichlet-based P\'olya tree (D-P tree) prior on the copula and based on the D-P tree prior, a nonparametric Bayesian inference procedure. Through theoretical analysis and simulations, we are able to show that the flexibility of the D-P tree prior ensures its consistency in copula estimation, thus able to detect more subtle and complex copula structures than earlier nonparametric Bayesian models, such as a Gaussian copula mixture. Further, the continuity of the imposed D-P tree prior leads to a more favorable smoothing effect in copula estimation over classic frequentist methods, especially with small sets of observations. We also apply our method to the copula prediction between the S&P 500 index and the IBM stock prices during the 2007-08 financial crisis, finding that D-P tree-based methods enjoy strong robustness and flexibility over classic methods under such irregular market behaviors.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.