Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intent Recognition in Smart Living Through Deep Recurrent Neural Networks (1702.06830v3)

Published 20 Feb 2017 in cs.CY

Abstract: Electroencephalography (EEG) signal based intent recognition has recently attracted much attention in both academia and industries, due to helping the elderly or motor-disabled people controlling smart devices to communicate with outer world. However, the utilization of EEG signals is challenged by low accuracy, arduous and time- consuming feature extraction. This paper proposes a 7-layer deep learning model to classify raw EEG signals with the aim of recognizing subjects' intents, to avoid the time consumed in pre-processing and feature extraction. The hyper-parameters are selected by an Orthogonal Array experiment method for efficiency. Our model is applied to an open EEG dataset provided by PhysioNet and achieves the accuracy of 0.9553 on the intent recognition. The applicability of our proposed model is further demonstrated by two use cases of smart living (assisted living with robotics and home automation).

Citations (59)

Summary

We haven't generated a summary for this paper yet.