Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Negative-Unlabeled Tensor Factorization for Location Category Inference from Highly Inaccurate Mobility Data (1702.06362v3)

Published 21 Feb 2017 in cs.LG

Abstract: Identifying significant location categories visited by mobile users is the key to a variety of applications. This is an extremely challenging task due to the possible deviation between the estimated location coordinate and the actual location, which could be on the order of kilometers. To estimate the actual location category more precisely, we propose a novel tensor factorization framework, through several key observations including the intrinsic correlations between users, to infer the most likely location categories within the location uncertainty circle. In addition, the proposed algorithm can also predict where users are even in the absence of location information. In order to efficiently solve the proposed framework, we propose a parameter-free and scalable optimization algorithm by effectively exploring the sparse and low-rank structure of the tensor. Our empirical studies show that the proposed algorithm is both efficient and effective: it can solve problems with millions of users and billions of location updates, and also provides superior prediction accuracies on real-world location updates and check-in data sets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.