Papers
Topics
Authors
Recent
2000 character limit reached

Quantum discord of states arising from graphs

Published 21 Feb 2017 in quant-ph, cs.DM, math-ph, math.CO, and math.MP | (1702.06360v1)

Abstract: Quantum discord refers to an important aspect of quantum correlations for bipartite quantum systems. In our earlier works we have shown that corresponding to every graph (combinatorial) there are quantum states whose properties are reflected in the structure of the corresponding graph. Here, we attempt to develop a graph theoretic study of quantum discord that corresponds to a necessary and sufficient condition of zero quantum discord states which says that the blocks of density matrix corresponding to a zero quantum discord state are normal and commute with each other. These blocks have a one to one correspondence with some specific subgraphs of the graph which represents the quantum state. We obtain a number of graph theoretic properties representing normality and commutativity of a set of matrices which are indeed arising from the given graph. Utilizing these properties we define graph theoretic measures for normality and commutativity that results a formulation of graph theoretic quantum discord. We identify classes of quantum states with zero discord using the said formulation.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.