Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Locally Repairable Codes with Multiple $(r_{i}, δ_{i})$-Localities (1702.05741v2)

Published 19 Feb 2017 in cs.IT and math.IT

Abstract: In distributed storage systems, locally repairable codes (LRCs) are introduced to realize low disk I/O and repair cost. In order to tolerate multiple node failures, the LRCs with \emph{$(r, \delta)$-locality} are further proposed. Since hot data is not uncommon in a distributed storage system, both Zeh \emph{et al.} and Kadhe \emph{et al.} focus on the LRCs with \emph{multiple localities or unequal localities} (ML-LRCs) recently, which said that the localities among the code symbols can be different. ML-LRCs are attractive and useful in reducing repair cost for hot data. In this paper, we generalize the ML-LRCs to the $(r,\delta)$-locality case of multiple node failures, and define an LRC with multiple $(r_{i}, \delta_{i}){i\in [s]}$ localities ($s\ge 2$), where $r{1}\leq r_{2}\leq\dots\leq r_{s}$ and $\delta_{1}\geq\delta_{2}\geq\dots\geq\delta_{s}\geq2$. Such codes ensure that some hot data could be repaired more quickly and have better failure-tolerance in certain cases because of relatively smaller $r_{i}$ and larger $\delta_{i}$. Then, we derive a Singleton-like upper bound on the minimum distance for the proposed LRCs by employing the regenerating-set technique. Finally, we obtain a class of explicit and structured constructions of optimal ML-LRCs, and further extend them to the cases of multiple $(r_{i}, \delta)_{i\in [s]}$ localities.

Citations (12)

Summary

We haven't generated a summary for this paper yet.