Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Stochastic Configuration Networks with Universal Approximation Property (1702.05639v4)

Published 18 Feb 2017 in cs.LG and cs.NE

Abstract: This paper develops a randomized approach for incrementally building deep neural networks, where a supervisory mechanism is proposed to constrain the random assignment of the weights and biases, and all the hidden layers have direct links to the output layer. A fundamental result on the universal approximation property is established for such a class of randomized leaner models, namely deep stochastic configuration networks (DeepSCNs). A learning algorithm is presented to implement DeepSCNs with either specific architecture or self-organization. The read-out weights attached with all direct links from each hidden layer to the output layer are evaluated by the least squares method. Given a set of training examples, DeepSCNs can speedily produce a learning representation, that is, a collection of random basis functions with the cascaded inputs together with the read-out weights. An empirical study on a function approximation is carried out to demonstrate some properties of the proposed deep learner model.

Citations (6)

Summary

We haven't generated a summary for this paper yet.