Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Costas cubes (1702.05473v2)

Published 17 Feb 2017 in math.CO, cs.IT, and math.IT

Abstract: A Costas array is a permutation array for which the vectors joining pairs of $1$s are all distinct. We propose a new three-dimensional combinatorial object related to Costas arrays: an order $n$ Costas cube is an array $(d_{i,j,k})$ of size $n \times n \times n$ over $\mathbb{Z}2$ for which each of the three projections of the array onto two dimensions, namely $(\sum_i d{i,j,k})$ and $(\sum_j d_{i,j,k})$ and $(\sum_k d_{i,j,k})$, is an order $n$ Costas array. We determine all Costas cubes of order at most $29$, showing that Costas cubes exist for all these orders except $18$ and $19$ and that a significant proportion of the Costas arrays of certain orders occur as projections of Costas cubes. We then present constructions for four infinite families of Costas cubes.

Citations (10)

Summary

We haven't generated a summary for this paper yet.