Hypercyclic and supercyclic linear operators on non-Archimedean vector spaces
Abstract: A main objective of the present paper is to develop the theory of hypercyclicity and supercyclicity of linear operators on topological vector space over non-Archimedean valued fields. We show that there does not exist any hypercyclic operator on finite dimensional spaces. Moreover, we give sufficient and necessary conditions of hypercyclicity (resp. supercyclicity) of linear operators on separable $F$-spaces. It is proven that a linear operator $T$ on topological vector space $X$ is hypercyclic (supercyclic) if it satisfies Hypercyclic (resp. Supercyclic) Criterion. We consider backward shifts on $c_0$, and characterize hypercyclicity and supercyclicity of such kinds of shifts. Finally, we study hypercyclicity, supercyclicity of operators $\lambda I+\mu B$, where $I$ is identity and $B$ is backward shift. We note that there are essential differences between the non-Archimedean and real cases.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.