Papers
Topics
Authors
Recent
Search
2000 character limit reached

Hypercyclic and supercyclic linear operators on non-Archimedean vector spaces

Published 16 Feb 2017 in math.FA and math.DS | (1702.05025v1)

Abstract: A main objective of the present paper is to develop the theory of hypercyclicity and supercyclicity of linear operators on topological vector space over non-Archimedean valued fields. We show that there does not exist any hypercyclic operator on finite dimensional spaces. Moreover, we give sufficient and necessary conditions of hypercyclicity (resp. supercyclicity) of linear operators on separable $F$-spaces. It is proven that a linear operator $T$ on topological vector space $X$ is hypercyclic (supercyclic) if it satisfies Hypercyclic (resp. Supercyclic) Criterion. We consider backward shifts on $c_0$, and characterize hypercyclicity and supercyclicity of such kinds of shifts. Finally, we study hypercyclicity, supercyclicity of operators $\lambda I+\mu B$, where $I$ is identity and $B$ is backward shift. We note that there are essential differences between the non-Archimedean and real cases.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.