Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bayesian framework for distributed estimation of arrival rates in asynchronous networks (1702.04939v1)

Published 16 Feb 2017 in math.OC and cs.SY

Abstract: In this paper we consider a network of agents monitoring a spatially distributed arrival process. Each node measures the number of arrivals seen at its monitoring point in a given time-interval with the objective of estimating the unknown local arrival rate. We propose an asynchronous distributed approach based on a Bayesian model with unknown hyperparameter, where each node computes the minimum mean square error (MMSE) estimator of its local arrival rate in a distributed way. As a result, the estimation at each node "optimally" fuses the information from the whole network through a distributed optimization algorithm. Moreover, we propose an ad-hoc distributed estimator, based on a consensus algorithm for time-varying and directed graphs, which exhibits reduced complexity and exponential convergence. We analyze the performance of the proposed distributed estimators, showing that they: (i) are reliable even in presence of limited local data, and (ii) improve the estimation accuracy compared to the purely decentralized setup. Finally, we provide a statistical characterization of the proposed estimators. In particular, for the ad-hoc estimator, we show that as the number of nodes goes to infinity its mean square error converges to the optimal one. Numerical Monte Carlo simulations confirm the theoretical characterization and highlight the appealing performances of the estimators.

Citations (8)

Summary

We haven't generated a summary for this paper yet.