Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Singularity categories of derived categories of hereditary algebras are derived categories (1702.04550v1)

Published 15 Feb 2017 in math.RT

Abstract: We show that for the path algebra $A$ of an acyclic quiver, the singularity category of the derived category $\mathsf{D}{\rm b}(\mathsf{mod}\,A)$ is triangle equivalent to the derived category of the functor category of $\underline{\mathsf{mod}}\,A$, that is, $\mathsf{D}_{\rm sg}(\mathsf{D}{\rm b}(\mathsf{mod}\,A))\simeq \mathsf{D}{\rm b}(\mathsf{mod}(\underline{\mathsf{mod}}\,A))$. This extends a result of Iyama-Oppermann for the path algebra $A$ of a Dynkin quiver. An important step is to establish a functor category analog of Happel's triangle equivalence for repetitive algebras.

Summary

We haven't generated a summary for this paper yet.