Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causal inference with confounders missing not at random (1702.03951v3)

Published 13 Feb 2017 in stat.ME

Abstract: It is important to draw causal inference from observational studies, which, however, becomes challenging if the confounders have missing values. Generally, causal effects are not identifiable if the confounders are missing not at random. We propose a novel framework to nonparametrically identify causal effects with confounders subject to an outcome-independent missingness, that is, the missing data mechanism is independent of the outcome, given the treatment and possibly missing confounders. We then propose a nonparametric two-stage least squares estimator and a parametric estimator for causal effects.

Citations (55)

Summary

We haven't generated a summary for this paper yet.