Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random walk based in-network computation of arbitrary functions (1702.03741v3)

Published 13 Feb 2017 in cs.DC and cs.NI

Abstract: We study in-network computation on general network topologies. Specifically, we are given the description of a function, and a network with distinct nodes at which the operands of the function are made available, and a designated sink where the computed value of the function is to be consumed. We want to compute the function during the process of moving the data towards the sink. Such settings have been studied in the literature, but mainly for symmetric functions, e.g. average, parity etc., which have the specific property that the output is invariant to permutation of the operands. To the best of our knowledge, we present the first fully decentralised algorithms for arbitrary functions, which we model as those functions whose computation schema is structured as a binary tree. We propose two algorithms, Fixed Random-Compute and Flexible Random-Compute, for this problem, both of which use simple random walks on the network as their basic primitive. Assuming a stochastic model for the generation of streams of data at each source, we provide a lower and an upper bound on the rate at which Fixed Random-Compute can compute the stream of associated function values. Note that the lower bound on rate though computed for our algorithm serves as a general lower bound for the function computation problem and to the best of our knowledge is first such lower bound for asymmetric functions. We also provide upper bounds on the average time taken to compute the function, characterising this time in terms of the fundamental parameters of the random walk on the network: the hitting time in the case of Fixed Random-Compute, and the mixing time in the case of Flexible Random-Compute.

Citations (2)

Summary

We haven't generated a summary for this paper yet.