Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive posterior contraction rates for the horseshoe (1702.03698v1)

Published 13 Feb 2017 in math.ST and stat.TH

Abstract: We investigate the frequentist properties of Bayesian procedures for estimation based on the horseshoe prior in the sparse multivariate normal means model. Previous theoretical results assumed that the sparsity level, that is, the number of signals, was known. We drop this assumption and characterize the behavior of the maximum marginal likelihood estimator (MMLE) of a key parameter of the horseshoe prior. We prove that the MMLE is an effective estimator of the sparsity level, in the sense that it leads to (near) minimax optimal estimation of the underlying mean vector generating the data. Besides this empirical Bayes procedure, we consider the hierarchical Bayes method of putting a prior on the unknown sparsity level as well. We show that both Bayesian techniques lead to rate-adaptive optimal posterior contraction, which implies that the horseshoe posterior is a good candidate for generating rate-adaptive credible sets.

Summary

We haven't generated a summary for this paper yet.