Papers
Topics
Authors
Recent
2000 character limit reached

On Consistency of Compressive Spectral Clustering

Published 12 Feb 2017 in stat.ML, cs.IT, cs.LG, and math.IT | (1702.03522v3)

Abstract: Spectral clustering is one of the most popular methods for community detection in graphs. A key step in spectral clustering algorithms is the eigen decomposition of the $n{\times}n$ graph Laplacian matrix to extract its $k$ leading eigenvectors, where $k$ is the desired number of clusters among $n$ objects. This is prohibitively complex to implement for very large datasets. However, it has recently been shown that it is possible to bypass the eigen decomposition by computing an approximate spectral embedding through graph filtering of random signals. In this paper, we analyze the working of spectral clustering performed via graph filtering on the stochastic block model. Specifically, we characterize the effects of sparsity, dimensionality and filter approximation error on the consistency of the algorithm in recovering planted clusters.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.