Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Precoding and RRH selection for User-centric Green MIMO C-RAN (1702.03346v1)

Published 10 Feb 2017 in cs.IT and math.IT

Abstract: This paper jointly optimizes the precoding matrices and the set of active remote radio heads (RRHs) to minimize the network power consumption (NPC) for a user-centric cloud radio access network (C-RAN), where both the RRHs and users have multiple antennas and each user is served by its nearby RRHs. Both users' rate requirements and per-RRH power constraints are considered. Due to these conflicting constraints, this optimization problem may be infeasible. In this paper, we propose to solve this problem in two stages. In Stage I, a low-complexity user selection algorithm is proposed to find the largest subset of feasible users. In Stage II, a low-complexity algorithm is proposed to solve the optimization problem with the users selected from Stage I. Specifically, the re-weighted $l_1$-norm minimization method is used to transform the original problem with non-smooth objective function into a series of weighted power minimization (WPM) problems, each of which can be solved by the weighted minimum mean square error (WMMSE) method. The solution obtained by the WMMSE method is proved to satisfy the Karush-Kuhn-Tucker (KKT) conditions of the WPM problem. Moreover, a low-complexity algorithm based on Newton's method and the gradient descent method is developed to update the precoder matrices in each iteration of the WMMSE method. Simulation results demonstrate the rapid convergence of the proposed algorithms and the benefits of equipping multiple antennas at the user side. Moreover, the proposed algorithm is shown to achieve near-optimal performance in terms of NPC.

Citations (157)

Summary

We haven't generated a summary for this paper yet.