Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Elastic Resource Management with Adaptive State Space Partitioning of Markov Decision Processes (1702.02978v1)

Published 9 Feb 2017 in cs.DC

Abstract: Modern large-scale computing deployments consist of complex applications running over machine clusters. An important issue in these is the offering of elasticity, i.e., the dynamic allocation of resources to applications to meet fluctuating workload demands. Threshold based approaches are typically employed, yet they are difficult to configure and optimize. Approaches based on reinforcement learning have been proposed, but they require a large number of states in order to model complex application behavior. Methods that adaptively partition the state space have been proposed, but their partitioning criteria and strategies are sub-optimal. In this work we present MDP_DT, a novel full-model based reinforcement learning algorithm for elastic resource management that employs adaptive state space partitioning. We propose two novel statistical criteria and three strategies and we experimentally prove that they correctly decide both where and when to partition, outperforming existing approaches. We experimentally evaluate MDP_DT in a real large scale cluster over variable not-encountered workloads and we show that it takes more informed decisions compared to static and model-free approaches, while requiring a minimal amount of training data.

Citations (6)

Summary

We haven't generated a summary for this paper yet.