Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Multiscale Finite Element Methods. Modeling missing subgrid information probabilistically (1702.02973v1)

Published 9 Feb 2017 in math.NA

Abstract: In this paper, we develop a Bayesian multiscale approach based on a multiscale finite element method. Because of scale disparity in many multiscale applications, computational models can not resolve all scales. Various subgrid models are proposed to represent un-resolved scales. Here, we consider a probabilistic approach for modeling un-resolved scales using the Multiscale Finite Element Method (cf., [1, 2]). By representing dominant modes using the Generalized Multiscale Finite Element, we propose a Bayesian framework, which provides multiple inexpensive (computable) solutions for a deterministic problem. These approximate probabilistic solutions may not be very close to the exact solutions and, thus, many realizations are needed. In this way, we obtain a rigorous probabilistic description of approximate solutions. In the paper, we consider parabolic and wave equations in heterogeneous media. In each time interval, the domain is divided into subregions. Using residual information, we design appropriate prior and posterior distributions. The likelihood consists of the residual minimization. To sample from the resulting posterior distribution, we consider several sampling strategies. The sampling involves identifying important regions and important degrees of freedom beyond permanent basis functions, which are used in residual computation. Numerical results are presented. We consider two sampling algorithms. The first algorithm uses sequential sampling and is inexpensive. In the second algorithm, we perform full sampling using the Gibbs sampling algorithm, which is more accurate compared to the sequential sampling. The main novel ingredients of our approach consist of: defining appropriate permanent basis functions and the corresponding residual; setting up a proper posterior distribution; and sampling the posteriors.

Summary

We haven't generated a summary for this paper yet.