Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Borel Globalizations of Partial Actions of Polish Groups (1702.02611v1)

Published 8 Feb 2017 in math.LO, math.GN, and math.OA

Abstract: We show that the enveloping space $X_G$ of a partial action of a Polish group $G$ on a Polish space $X$ is a standard Borel space, that is to say, there is a topology $\tau$ on $X_G$ such that $(X_G, \tau)$ is Polish and the quotient Borel structure on $X_G$ is equal to $Borel(X_G,\tau)$. To prove this result we show a generalization of a theorem of Burgess about Borel selectors for the orbit equivalence relation induced by a group action and also show that some properties of the Vaught's transform are valid for partial actions of groups.

Summary

We haven't generated a summary for this paper yet.