Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix Completion from $O(n)$ Samples in Linear Time (1702.02267v4)

Published 8 Feb 2017 in stat.ML, cs.DS, cs.LG, and math.OC

Abstract: We consider the problem of reconstructing a rank-$k$ $n \times n$ matrix $M$ from a sampling of its entries. Under a certain incoherence assumption on $M$ and for the case when both the rank and the condition number of $M$ are bounded, it was shown in \cite{CandesRecht2009, CandesTao2010, keshavan2010, Recht2011, Jain2012, Hardt2014} that $M$ can be recovered exactly or approximately (depending on some trade-off between accuracy and computational complexity) using $O(n \, \text{poly}(\log n))$ samples in super-linear time $O(n{a} \, \text{poly}(\log n))$ for some constant $a \geq 1$. In this paper, we propose a new matrix completion algorithm using a novel sampling scheme based on a union of independent sparse random regular bipartite graphs. We show that under the same conditions w.h.p. our algorithm recovers an $\epsilon$-approximation of $M$ in terms of the Frobenius norm using $O(n \log2(1/\epsilon))$ samples and in linear time $O(n \log2(1/\epsilon))$. This provides the best known bounds both on the sample complexity and computational complexity for reconstructing (approximately) an unknown low-rank matrix. The novelty of our algorithm is two new steps of thresholding singular values and rescaling singular vectors in the application of the "vanilla" alternating minimization algorithm. The structure of sparse random regular graphs is used heavily for controlling the impact of these regularization steps.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. David Gamarnik (70 papers)
  2. Quan Li (66 papers)
  3. Hongyi Zhang (41 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.