Successive Local and Successive Global Omniscience (1702.01773v2)
Abstract: This paper considers two generalizations of the cooperative data exchange problem, referred to as the successive local omniscience (SLO) and the successive global omniscience (SGO). The users are divided into $\ell$ nested sub-groups. Each user initially knows a subset of packets in a ground set $X$ of size $k$, and all users wish to learn all packets in $X$. The users exchange their packets by broadcasting coded or uncoded packets. In SLO or SGO, in the $l$th ($1\leq l\leq \ell$) round of transmissions, the $l$th smallest sub-group of users need to learn all packets they collectively hold or all packets in $X$, respectively. The problem is to find the minimum sum-rate (i.e., the total transmission rate by all users) for each round, subject to minimizing the sum-rate for the previous round. To solve this problem, we use a linear-programming approach. For the cases in which the packets are randomly distributed among users, we construct a system of linear equations whose solution characterizes the minimum sum-rate for each round with high probability as $k$ tends to infinity. Moreover, for the special case of two nested groups, we derive closed-form expressions, which hold with high probability as $k$ tends to infinity, for the minimum sum-rate for each round.