2000 character limit reached
A Class of Exponential Sequences with Shift-Invariant Discriminators (1702.00802v1)
Published 2 Feb 2017 in math.NT and cs.DM
Abstract: The discriminator of an integer sequence s = (s(i))_{i>=0}, introduced by Arnold, Benkoski, and McCabe in 1985, is the function D_s(n) that sends n to the least integer m such that the numbers s(0), s(1), ..., s(n-1) are pairwise incongruent modulo m. In this note we present a class of exponential sequences that have the special property that their discriminators are shift-invariant, i.e., that the discriminator of the sequence is the same even if the sequence is shifted by any positive constant.