Papers
Topics
Authors
Recent
2000 character limit reached

Indistinguishability of bipartite states by positive-partial-transpose operations in the many-copy scenario

Published 1 Feb 2017 in quant-ph | (1702.00231v2)

Abstract: A bipartite subspace $S$ is called strongly positive-partial-transpose-unextendible (PPT-unextendible) if for every positive integer $k$, there is no PPT operator supporting on the orthogonal complement of $S{\otimes k}$. We show that a subspace is strongly PPT-unextendible if it contains a PPT-definite operator (a positive semidefinite operator whose partial transpose is positive definite). Based on these, we are able to propose a simple criterion for verifying whether a set of bipartite orthogonal quantum states is indistinguishable by PPT operations in the many copy scenario. Utilizing this criterion, we further point out that any entangled pure state and its orthogonal complement cannot be distinguished by PPT operations in the many copy scenario. On the other hand, we investigate that the minimum dimension of strongly PPT-unextendible subspaces in an $m\otimes n$ system is $m+n-1$, which involves a generalization of the result that non-positive-partial-transpose (NPT) subspaces can be as large as any entangled subspace [N. Johnston, Phys. Rev. A 87: 064302 (2013)].

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.