Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding food inflation in India: A Machine Learning approach (1701.08789v1)

Published 30 Jan 2017 in stat.ML and q-fin.EC

Abstract: Over the past decade, the stellar growth of Indian economy has been challenged by persistently high levels of inflation, particularly in food prices. The primary reason behind this stubborn food inflation is mismatch in supply-demand, as domestic agricultural production has failed to keep up with rising demand owing to a number of proximate factors. The relative significance of these factors in determining the change in food prices have been analysed using gradient boosted regression trees (BRT), a machine learning technique. The results from BRT indicates all predictor variables to be fairly significant in explaining the change in food prices, with MSP and farm wages being relatively more important than others. International food prices were found to have limited relevance in explaining the variation in domestic food prices. The challenge of ensuring food and nutritional security for growing Indian population with rising incomes needs to be addressed through resolute policy reforms.

Citations (6)

Summary

We haven't generated a summary for this paper yet.