Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Review of Methodologies for Natural-Language-Facilitated Human-Robot Cooperation (1701.08756v3)

Published 30 Jan 2017 in cs.RO, cs.AI, cs.CL, and cs.HC

Abstract: Natural-language-facilitated human-robot cooperation (NLC) refers to using natural language (NL) to facilitate interactive information sharing and task executions with a common goal constraint between robots and humans. Recently, NLC research has received increasing attention. Typical NLC scenarios include robotic daily assistance, robotic health caregiving, intelligent manufacturing, autonomous navigation, and robot social accompany. However, a thorough review, that can reveal latest methodologies to use NL to facilitate human-robot cooperation, is missing. In this review, a comprehensive summary about methodologies for NLC is presented. NLC research includes three main research focuses: NL instruction understanding, NL-based execution plan generation, and knowledge-world mapping. In-depth analyses on theoretical methods, applications, and model advantages and disadvantages are made. Based on our paper review and perspective, potential research directions of NLC are summarized.

Citations (39)

Summary

We haven't generated a summary for this paper yet.