Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Click Through Rate Prediction for Contextual Advertisment Using Linear Regression (1701.08744v1)

Published 30 Jan 2017 in cs.IR, cs.AI, and cs.LG

Abstract: This research presents an innovative and unique way of solving the advertisement prediction problem which is considered as a learning problem over the past several years. Online advertising is a multi-billion-dollar industry and is growing every year with a rapid pace. The goal of this research is to enhance click through rate of the contextual advertisements using Linear Regression. In order to address this problem, a new technique propose in this paper to predict the CTR which will increase the overall revenue of the system by serving the advertisements more suitable to the viewers with the help of feature extraction and displaying the advertisements based on context of the publishers. The important steps include the data collection, feature extraction, CTR prediction and advertisement serving. The statistical results obtained from the dynamically used technique show an efficient outcome by fitting the data close to perfection for the LR technique using optimized feature selection.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (20)

Summary

We haven't generated a summary for this paper yet.