Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An equivalence between truncations of categorified quantum groups and Heisenberg categories (1701.08654v2)

Published 30 Jan 2017 in math.RT and math.QA

Abstract: We introduce a simple diagrammatic 2-category $\mathscr{A}$ that categorifies the image of the Fock space representation of the Heisenberg algebra and the basic representation of $\mathfrak{sl}\infty$. We show that $\mathscr{A}$ is equivalent to a truncation of the Khovanov--Lauda categorified quantum group $\mathscr{U}$ of type $A\infty$, and also to a truncation of Khovanov's Heisenberg 2-category $\mathscr{H}$. This equivalence is a categorification of the principal realization of the basic representation of $\mathfrak{sl}_\infty$. As a result of the categorical equivalences described above, certain actions of $\mathscr{H}$ induce actions of $\mathscr{U}$, and vice versa. In particular, we obtain an explicit action of $\mathscr{U}$ on representations of symmetric groups. We also explicitly compute the Grothendieck group of the truncation of $\mathscr{H}$. The 2-category $\mathscr{A}$ can be viewed as a graphical calculus describing the functors of $i$-induction and $i$-restriction for symmetric groups, together with the natural transformations between their compositions. The resulting computational tool is used to give simple diagrammatic proofs of (apparently new) representation theoretic identities.

Summary

We haven't generated a summary for this paper yet.