Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random Networks, Graphical Models, and Exchangeability (1701.08420v2)

Published 29 Jan 2017 in math.ST and stat.TH

Abstract: We study conditional independence relationships for random networks and their interplay with exchangeability. We show that, for finitely exchangeable network models, the empirical subgraph densities are maximum likelihood estimates of their theoretical counterparts. We then characterize all possible Markov structures for finitely exchangeable random graphs, thereby identifying a new class of Markov network models corresponding to bidirected Kneser graphs. In particular, we demonstrate that the fundamental property of dissociatedness corresponds to a Markov property for exchangeable networks described by bidirected line graphs. Finally we study those exchangeable models that are also summarized in the sense that the probability of a network only depends onthe degree distribution, and identify a class of models that is dual to the Markov graphs of Frank and Strauss (1986). Particular emphasis is placed on studying consistency properties of network models under the process of forming subnetworks and we show that the only consistent systems of Markov properties correspond to the empty graph, the bidirected line graph of the complete graph, and the complete graph.

Summary

We haven't generated a summary for this paper yet.