Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On extractable shared information (1701.07805v3)

Published 26 Jan 2017 in cs.IT and math.IT

Abstract: We consider the problem of quantifying the information shared by a pair of random variables $X_{1},X_{2}$ about another variable $S$. We propose a new measure of shared information, called extractable shared information, that is left monotonic; that is, the information shared about $S$ is bounded from below by the information shared about $f(S)$ for any function $f$. We show that our measure leads to a new nonnegative decomposition of the mutual information $I(S;X_1X_2)$ into shared, complementary and unique components. We study properties of this decomposition and show that a left monotonic shared information is not compatible with a Blackwell interpretation of unique information. We also discuss whether it is possible to have a decomposition in which both shared and unique information are left monotonic.

Citations (27)

Summary

We haven't generated a summary for this paper yet.