Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Schoenberg's theorem for real and complex Hilbert spheres revisited (1701.07214v1)

Published 25 Jan 2017 in math.CA

Abstract: Schoenberg's theorem for the complex Hilbert sphere proved by Christensen and Ressel in 1982 by Choquet theory is extended to the following result: Let L denote a locally compact group and let \overline{\D} denote the closed unit disc in the complex plane. Continuous functions f:\overline{\D}\times L\to \C such that f(\xi \cdot \eta,u{-1}v) is a positive definite kernel on the product of the unit sphere in \ell_2(\C) and L are characterized as the functions with a uniformly convergent expansion f(z,u)=\sum_{m,n=0}\infty \varphi_{m,n}(u)zm\overline{z}n, where \varphi_{m,n} is a double sequence of continuous positive definite functions on L such that \sum\varphi_{m,n}(e_L)<\infty (e_L is the neutral element of L). It is shown how the coefficient functions \varphi_{m,n} are obtained as limits from expansions for positive definite functions on finite dimensional complex spheres via a Rodrigues formula for disc polynomials. Similar results are obtained for the real Hilbert sphere.

Summary

We haven't generated a summary for this paper yet.