Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Infinite Mixtures of Infinite Factor Analysers (1701.07010v6)

Published 24 Jan 2017 in stat.ME

Abstract: Factor-analytic Gaussian mixture models are often employed as a model-based approach to clustering high-dimensional data. Typically, the numbers of clusters and latent factors must be specified in advance of model fitting, and remain fixed. The pair which optimises some model selection criterion is then chosen. For computational reasons, models in which the number of latent factors differ across clusters are rarely considered. Here the infinite mixture of infinite factor analysers (IMIFA) model is introduced. IMIFA employs a Pitman-Yor process prior to facilitate automatic inference of the number of clusters using the stick-breaking construction and a slice sampler. Furthermore, IMIFA employs multiplicative gamma process shrinkage priors to allow cluster-specific numbers of factors, automatically inferred via an adaptive Gibbs sampler. IMIFA is presented as the flagship of a family of factor-analytic mixture models, providing flexible approaches to clustering high-dimensional data. Applications to a benchmark data set, metabolomic spectral data, and a manifold learning handwritten digit example illustrate the IMIFA model and its advantageous features. These include obviating the need for model selection criteria, reducing the computational burden associated with the search of the model space, improving clustering performance by allowing cluster-specific numbers of factors, and quantifying uncertainty in the numbers of clusters and cluster-specific factors.

Summary

We haven't generated a summary for this paper yet.