Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ENIGMA: Efficient Learning-based Inference Guiding Machine (1701.06532v1)

Published 23 Jan 2017 in cs.LO, cs.AI, and cs.LG

Abstract: ENIGMA is a learning-based method for guiding given clause selection in saturation-based theorem provers. Clauses from many proof searches are classified as positive and negative based on their participation in the proofs. An efficient classification model is trained on this data, using fast feature-based characterization of the clauses . The learned model is then tightly linked with the core prover and used as a basis of a new parameterized evaluation heuristic that provides fast ranking of all generated clauses. The approach is evaluated on the E prover and the CASC 2016 AIM benchmark, showing a large increase of E's performance.

Citations (90)

Summary

We haven't generated a summary for this paper yet.