Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Restricted sums of four squares (1701.05868v10)

Published 20 Jan 2017 in math.NT

Abstract: We refine Lagrange's four-square theorem in new ways by imposing some restrictions involving powers of two (including $1$). For example, we show that each $n=1,2,3,\ldots$ can be written as $x2+y2+z2+w2$ $(x,y,z,w\in\mathbb N={0,1,2,\ldots})$ with $|x+y-z|\in{4k:\ k\in\mathbb N}$ (or $|2x-y|\in{4k:\ k\in\mathbb N}$, or $x+y-z\in{\pm 8k:\ k\in\mathbb N}\cup{0}\subseteq{t3:\ t\in\mathbb Z}$), and that we can write any positive integer as $x2+y2+z2+w2$ $(x,y,z,w\in\mathbb Z)$ with $x+y+2z$ (or $x+2y+2z$) a power of four. We also prove that any $n\in\mathbb N$ can be written as $x2+y2+z2+2w2$ $(x,y,z,w\in\mathbb Z)$ with $x+y+z+w$ a square (or a cube). In addition, we pose some open conjectures for further research; for example, we conjecture that any integer $n>1$ can be written as $a2+b2+3c+5d$ with $a,b,c,d\in\mathbb N$.

Summary

We haven't generated a summary for this paper yet.