Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximizing the Conditional Expected Reward for Reaching the Goal (1701.05389v2)

Published 19 Jan 2017 in cs.LO and cs.DM

Abstract: The paper addresses the problem of computing maximal conditional expected accumulated rewards until reaching a target state (briefly called maximal conditional expectations) in finite-state Markov decision processes where the condition is given as a reachability constraint. Conditional expectations of this type can, e.g., stand for the maximal expected termination time of probabilistic programs with non-determinism, under the condition that the program eventually terminates, or for the worst-case expected penalty to be paid, assuming that at least three deadlines are missed. The main results of the paper are (i) a polynomial-time algorithm to check the finiteness of maximal conditional expectations, (ii) PSPACE-completeness for the threshold problem in acyclic Markov decision processes where the task is to check whether the maximal conditional expectation exceeds a given threshold, (iii) a pseudo-polynomial-time algorithm for the threshold problem in the general (cyclic) case, and (iv) an exponential-time algorithm for computing the maximal conditional expectation and an optimal scheduler.

Citations (21)

Summary

We haven't generated a summary for this paper yet.