Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entropy dissipation of Fokker-Planck equations on graphs (1701.04841v3)

Published 17 Jan 2017 in math.DS

Abstract: We study the nonlinear Fokker-Planck equation on graphs, which is the gradient flow in the space of probability measures supported on the nodes with respect to the discrete Wasserstein metric. The energy functional driving the gradient flow consists of a Boltzmann entropy, a linear potential and a quadratic interaction energy. We show that the solution converges to the Gibbs measures exponentially fast with a rate that can be given analytically. The continuous analog of this asymptotic rate is related to the Yano's formula.

Summary

We haven't generated a summary for this paper yet.