Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Human perception in computer vision (1701.04674v1)

Published 17 Jan 2017 in cs.CV and q-bio.NC

Abstract: Computer vision has made remarkable progress in recent years. Deep neural network (DNN) models optimized to identify objects in images exhibit unprecedented task-trained accuracy and, remarkably, some generalization ability: new visual problems can now be solved more easily based on previous learning. Biological vision (learned in life and through evolution) is also accurate and general-purpose. Is it possible that these different learning regimes converge to similar problem-dependent optimal computations? We therefore asked whether the human system-level computation of visual perception has DNN correlates and considered several anecdotal test cases. We found that perceptual sensitivity to image changes has DNN mid-computation correlates, while sensitivity to segmentation, crowding and shape has DNN end-computation correlates. Our results quantify the applicability of using DNN computation to estimate perceptual loss, and are consistent with the fascinating theoretical view that properties of human perception are a consequence of architecture-independent visual learning.

Citations (9)

Summary

We haven't generated a summary for this paper yet.