Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Total rainbow connection of digraphs (1701.04283v2)

Published 16 Jan 2017 in math.CO

Abstract: An edge-coloured path is rainbow if its edges have distinct colours. For a connected graph $G$, the rainbow connection number (resp. strong rainbow connection number) of $G$ is the minimum number of colours required to colour the edges of $G$ so that, any two vertices of $G$ are connected by a rainbow path (resp. rainbow geodesic). These two graph parameters were introduced by Chartrand, Johns, McKeon and Zhang in 2008. Krivelevich and Yuster generalised this concept to the vertex-coloured setting. Similarly, Liu, Mestre and Sousa introduced the version which involves total-colourings. Dorbec, Schiermeyer, Sidorowicz and Sopena extended the concept of the rainbow connection to digraphs. In this paper, we consider the (strong) total rainbow connection number of digraphs. Results on the (strong) total rainbow connection number of biorientations of graphs, tournaments and cactus digraphs are presented.

Summary

We haven't generated a summary for this paper yet.