Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A General Approach for Cure Models in Survival Analysis (1701.03769v1)

Published 13 Jan 2017 in math.ST and stat.TH

Abstract: In survival analysis it often happens that some subjects under study do not experience the event of interest; they are considered to be cured'. The population is thus a mixture of two subpopulations: the one of cured subjects, and the one ofsusceptible' subjects. When covariates are present, a so-called mixture cure model can be used to model the conditional survival function of the population. It depends on two components: the probability of being cured and the conditional survival function of the susceptible subjects. In this paper we propose a novel approach to estimate a mixture cure model when the data are subject to random right censoring. We work with a parametric model for the cure proportion (like e.g. a logistic model), while the conditional survival function of the uncured subjects is unspecified. The approach is based on an inversion which allows to write the survival function as a function of the distribution of the observable random variables. This leads to a very general class of models, which allows a flexible and rich modeling of the conditional survival function. We show the identifiability of the proposed model, as well as the weak consistency and the asymptotic normality of the model parameters. We also consider in more detail the case where kernel estimators are used for the nonparametric part of the model. The new estimators are compared with the estimators from a Cox mixture cure model via finite sample simulations. Finally, we apply the new model and estimation procedure on two medical data sets.

Summary

We haven't generated a summary for this paper yet.