Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent (1701.03232v3)

Published 12 Jan 2017 in math.AP

Abstract: The blow-up for semilinear wave equations with the scale invariant damping has been well-studied for sub-Fujita exponent. However, for super-Fujita exponent, there is only one blow-up result which is obtained in 2014 by Wakasugi in the case of non-effective damping. In this paper we extend his result in two aspects by showing that: (I) the blow-up will happen for bigger exponent, which is closely related to the Strauss exponent, the critical number for non-damped semilinear wave equations; (II) such a blow-up result is established for a wider range of the constant than the known non-effective one in the damping term.

Summary

We haven't generated a summary for this paper yet.