Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multifaceted Evaluation of Neural versus Phrase-Based Machine Translation for 9 Language Directions (1701.02901v1)

Published 11 Jan 2017 in cs.CL

Abstract: We aim to shed light on the strengths and weaknesses of the newly introduced neural machine translation paradigm. To that end, we conduct a multifaceted evaluation in which we compare outputs produced by state-of-the-art neural machine translation and phrase-based machine translation systems for 9 language directions across a number of dimensions. Specifically, we measure the similarity of the outputs, their fluency and amount of reordering, the effect of sentence length and performance across different error categories. We find out that translations produced by neural machine translation systems are considerably different, more fluent and more accurate in terms of word order compared to those produced by phrase-based systems. Neural machine translation systems are also more accurate at producing inflected forms, but they perform poorly when translating very long sentences.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (143)

Summary

We haven't generated a summary for this paper yet.