Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Greed is Good: Optimistic Algorithms for Bipartite-Graph Partial Coloring on Multicore Architectures (1701.02628v1)

Published 10 Jan 2017 in cs.DC and cs.DS

Abstract: In parallel computing, a valid graph coloring yields a lock-free processing of the colored tasks, data points, etc., without expensive synchronization mechanisms. However, coloring is not free and the overhead can be significant. In particular, for the bipartite-graph partial coloring (BGPC) and distance-2 graph coloring (D2GC) problems, which have various use-cases within the scientific computing and numerical optimization domains, the coloring overhead can be in the order of minutes with a single thread for many real-life graphs. In this work, we propose parallel algorithms for bipartite-graph partial coloring on shared-memory architectures. Compared to the existing shared-memory BGPC algorithms, the proposed ones employ greedier and more optimistic techniques that yield a better parallel coloring performance. In particular, on 16 cores, the proposed algorithms perform more than 4x faster than their counterparts in the ColPack library which is, to the best of our knowledge, the only publicly-available coloring library for multicore architectures. In addition to BGPC, the proposed techniques are employed to devise parallel distance-2 graph coloring algorithms and similar performance improvements have been observed. Finally, we propose two costless balancing heuristics for BGPC that can reduce the skewness and imbalance on the cardinality of color sets (almost) for free. The heuristics can also be used for the D2GC problem and in general, they will probably yield a better color-based parallelization performance especially on many-core architectures.

Citations (7)

Summary

We haven't generated a summary for this paper yet.