A Theory of Solvability for Lossless Power Flow Equations -- Part II: Conditions for Radial Networks
Abstract: This two-part paper details a theory of solvability for the power flow equations in lossless power networks. In Part I, we derived a new formulation of the lossless power flow equations, which we term the fixed-point power flow. The model is parameterized by several graph-theoretic matrices -- the power network stiffness matrices -- which quantify the internal coupling strength of the network. In Part II, we leverage the fixed-point power flow to study power flow solvability. For radial networks, we derive parametric conditions which guarantee the existence and uniqueness of a high-voltage power flow solution, and construct examples for which the conditions are also necessary. Our conditions (i) imply convergence of the fixed-point power flow iteration, (ii) unify and extend recent results on solvability of decoupled power flow, (iii) directly generalize the textbook two-bus system results, and (iv) provide new insights into how the structure and parameters of the grid influence power flow solvability.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.