Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

"The Capacity of the Relay Channel": Solution to Cover's Problem in the Gaussian Case (1701.02043v4)

Published 9 Jan 2017 in cs.IT and math.IT

Abstract: Consider a memoryless relay channel, where the relay is connected to the destination with an isolated bit pipe of capacity $C_0$. Let $C(C_0)$ denote the capacity of this channel as a function of $C_0$. What is the critical value of $C_0$ such that $C(C_0)$ first equals $C(\infty)$? This is a long-standing open problem posed by Cover and named "The Capacity of the Relay Channel," in $Open \ Problems \ in \ Communication \ and \ Computation$, Springer-Verlag, 1987. In this paper, we answer this question in the Gaussian case and show that $C(C_0)$ can not equal to $C(\infty)$ unless $C_0=\infty$, regardless of the SNR of the Gaussian channels. This result follows as a corollary to a new upper bound we develop on the capacity of this channel. Instead of "single-letterizing" expressions involving information measures in a high-dimensional space as is typically done in converse results in information theory, our proof directly quantifies the tension between the pertinent $n$-letter forms. This is done by translating the information tension problem to a problem in high-dimensional geometry. As an intermediate result, we develop an extension of the classical isoperimetric inequality on a high-dimensional sphere, which can be of interest in its own right.

Citations (7)

Summary

We haven't generated a summary for this paper yet.