Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Perturbing Eisenstein polynomials over local fields (1701.01978v1)

Published 8 Jan 2017 in math.NT

Abstract: Let $K$ be a local field whose residue field has characteristic $p$ and let $L/K$ be a finite separable totally ramified extension. Let $\pi_L$ be a uniformizer for $L$ and let $f(X)$ be the minimum polynomial for $\pi_L$ over $K$. Suppose $\tilde{\pi}_L$ is another uniformizer for $L$ such that $\tilde{\pi}_L\equiv\pi_L+r\pi_L{\ell+1} \pmod{\pi_L{\ell+2}}$ for some $\ell\ge1$ and $r\in O_K$. Let $\tilde{f}(X)$ be the minimum polynomial for $\tilde{\pi}_L$ over $K$. In this paper we give congruences for the coefficients of $\tilde{f}(X)$ in terms of $r$ and the coefficients of $f(X)$. These congruences improve and extend work of Krasner.

Summary

We haven't generated a summary for this paper yet.