Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linking the Neural Machine Translation and the Prediction of Organic Chemistry Reactions (1612.09529v1)

Published 29 Dec 2016 in cs.LG

Abstract: Finding the main product of a chemical reaction is one of the important problems of organic chemistry. This paper describes a method of applying a neural machine translation model to the prediction of organic chemical reactions. In order to translate 'reactants and reagents' to 'products', a gated recurrent unit based sequence-to-sequence model and a parser to generate input tokens for model from reaction SMILES strings were built. Training sets are composed of reactions from the patent databases, and reactions manually generated applying the elementary reactions in an organic chemistry textbook of Wade. The trained models were tested by examples and problems in the textbook. The prediction process does not need manual encoding of rules (e.g., SMARTS transformations) to predict products, hence it only needs sufficient training reaction sets to learn new types of reactions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Juno Nam (10 papers)
  2. Jurae Kim (1 paper)
Citations (77)

Summary

We haven't generated a summary for this paper yet.