Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Pessimistic Limits and Possibilities of Margin-based Losses in Semi-supervised Learning (1612.08875v3)

Published 28 Dec 2016 in stat.ML and cs.LG

Abstract: Consider a classification problem where we have both labeled and unlabeled data available. We show that for linear classifiers defined by convex margin-based surrogate losses that are decreasing, it is impossible to construct any semi-supervised approach that is able to guarantee an improvement over the supervised classifier measured by this surrogate loss on the labeled and unlabeled data. For convex margin-based loss functions that also increase, we demonstrate safe improvements are possible.

Citations (3)

Summary

We haven't generated a summary for this paper yet.