Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Nonparametric Models for Synchronous Brain-Computer Interfaces (1612.08642v1)

Published 27 Dec 2016 in cs.CV and q-bio.NC

Abstract: A brain-computer interface (BCI) is a system that aims for establishing a non-muscular communication path for subjects who had suffer from a neurodegenerative disease. Many BCI systems make use of the phenomena of event-related synchronization and de-synchronization of brain waves as a main feature for classification of different cognitive tasks. However, the temporal dynamics of the electroencephalographic (EEG) signals contain additional information that can be incorporated into the inference engine in order to improve the performance of the BCIs. This information about the dynamics of the signals have been exploited previously in BCIs by means of generative and discriminative methods. In particular, hidden Markov models (HMMs) have been used in previous works. These methods have the disadvantage that the model parameters such as the number of hidden states and the number of Gaussian mixtures need to be fix "a priori". In this work, we propose a Bayesian nonparametric model for brain signal classification that does not require "a priori" selection of the number of hidden states and the number of Gaussian mixtures of a HMM. The results show that the proposed model outperform other methods based on HMM as well as the winner algorithm of the BCI competition IV.

Citations (3)

Summary

We haven't generated a summary for this paper yet.