A Spectral Gap Estimate and Applications (1612.08565v2)
Abstract: We consider the Schr\"odinger operator $$-\frac{d2}{d x2} + V \qquad \mbox{on an interval}~~[a,b]~\mbox{with Dirichlet boundary conditions},$$ where $V$ is bounded from below and prove a lower bound on the first eigenvalue $\lambda_1$ in terms of sublevel estimates: if $ w_V(y) = |I_y|,\text{ where } I_y := \left{ x \in [a,b]: V(x) \leq y \right},$ then $$ \lambda_1 \geq \frac{1}{250} \min_{y > \min V}{\left(\frac{1}{w_V(y)2} + y\right)}.$$ The result is sharp up to a universal constant if $\left{ x \in [a,b]: V(x) \leq y \right}$ is an interval for the value of $y$ solving the minimization problem. An immediate application is as follows: let $\Omega \subset \mathbb{R}2$ be a convex domain with inradius $\rho$ and diameter $D$ and let $u:\Omega \rightarrow \mathbb{R}$ be the first eigenfunction of the Laplacian $-\Delta$ on $\Omega$ with Dirichlet boundary conditions on $\partial \Omega$. We prove $$ | u |{L{\infty}} \lesssim \frac{1}{\rho{}} \left( \frac{\rho}{D} \right){1/6} |u|{L2},$$ which answers a question of van den Berg in the special case of two dimensions.